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Abstract. In this paper necessary and sufficient conditions (related to Pontryagin's principle) for a 
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1. In troduct ion  

This paper considers some nonconvex optimal control problems for the system of 
ordinary differential equations. Such problems arise, for example, in applications 
previously described [1-3]. 

Unfortunately, sufficient optimality conditions such as those in the dynamic 
programming method [4, 7, 8] and Krotov's conditions, [4, 9] have some disadvan- 
tages which are not characteristic of Pontryagin's maximum principle. First of all, 
it refers to the numerical methods constructed on their basis [4-9]. For instance, it 
is sufficient to consider the proofs of convergence for numerical methods, and the 
results of numerical experiments [5, 6, 8, 9]. 

The present paper proposes an approach to construct necessary and sufficient 
global maximum conditions for a convex terminal functional based on earlier papers 
[ 10-13]. For this class of problems Pontryagin's maximum principle follows f rom 
the general global optimality condition. First, a brief proof of global maximum 
conditions for a convex function on a set from R n is given. 

Second, the maximization problem of a convex terminal functional for the linear 
system is considered. 

Third, optimal control for a semi-linear system with a convex objective func- 
tional and terminal equality and inequality constraints is investigated. 

Finally, the problem of optimal control of a general system with a convex 
terminal functional and local Lipschitz equality and inequality constraints is con- 
sidered. 
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All the results are illustrated with examples. The brackets (.,.} denote the scalar 
product in the space R ~ or a bilinear form value on the product of Banach spaces 
X* x X, that are in duality [4, 14-18]. 

Standard notations of convex and nonlinear analysis [14-18] are used in this 
paper. 

The author wishes to thank E E Vasiliev and the referees for their useful 
comments and suggestions. 

2. The Maximization Problems 

Consider the following optimization problem 

f (x )  --~ max, x E D, (1) 

where f ( . )  is a convex lower semicontinuous proper functional [14-19] on a 
reflexive Banach space X, and D is an arbitrary subset from X: 

D C int dom f.  (2) 

THEOREM 1. I f  z E D is a global maximum point of Problem (1) ( z E Argmax(1) ), 
then 

Vy" f (y )  = f ( z ) ,  Vy* E Of(y), ~ (E.1) 
( y * , x - y )  ~<0, V x E D .  J 

I f  besides, 

3v E X : - o c  < f (v )  < f ( z )  < +oc, (H) 

then the optimality condition (E.1) becomes sufficient for z E Argmax (1) as well. 
Proof. (1) The necessity is obvious. 

(2) Let there exist u E D : f (u)  > f (z) .  Consider the convex closed set 

S( f ,  z) = {x e X l f ( z )  ,< f(z)}.  

This is obvious because (S) int S( f ,  z) r 0 and u ~ S( f ,  z). Thus, in virtue of 
reflexivity of X [4, 14] 

3y, f (y )  = f ( z )  : Ily -  ,11 -- inf(l[x - u l l lx  E S(f ,  z)} > 0. (3) 

And from the extremum theory [4, 14-18] it follows that the point y E Argmin(r 
s ( f ,  z)) ,  r  = IIx - ull can be characterized by the following condition: 

3x* E 0 r  Sy* E 0 f ( y ) ,  Ao>IO, 3A>10, 
(4) 

Aox*+Ay* = 0 ,  Ao+A > 0 .  

Note, by definition [14] 

0r ---- {x* E x *  I IIx*ll = 1, (x*,y - u) = IlY - ull}. (5) 
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If ~0 = 0 then )~ > 0, and the condition y E Argmin(f, X) follows from (4). 
This is impossible because of (H) and the equality f(y) = f(z). If, now, .~ = 0 
then because of (4) 

o ~ or 

The latter is also impossible because of (3). 
Then, after dividing (4) by )~ > 0, we have 

a o x * + y * = 0 ,  a o > 0 ,  x* cOr  y* EOf(y). 

From the above fact and on account of (3) and (5) we have 

(y*,  ~ - v)  = ~o (~* ,  y - u )  = ~011y - ~1[ > 0, 

that is in contradiction with (E.1). [] 

NOTES. (1) It is easily seen that assumption (H) is essential for sufficiency, since, 
for example, for the case X = R '~ and a differentiable function .f(.), all the points 
of the global minimum f on R n satisfy the condition f'(y) = 0, and, therefore, 
trivially satisfy condition (E. 1). 

(2) The well-known optimality condition for a differentiable function f 

( f ' ( z ) , x -  z) < O, Vx E D, (6) 

usually proved for a convex set D, follows from condition (E.1) when y = z 
(X = Rn). The convexity of D is not necessary here. Convexity of .f is required 
instead. 

EXAMPLE 1. Let in problem (1) X = R, R - the real axis, 

f ( x ) = ( x  2 - 2 ) ,  D = [ - 2 , - 0 . 2 1 t 2 [ 0 , 1 ] .  

The classical optimality condition (6) is satisfied in the two points zl = 1, z2 = -2 .  
In this case for yl = - 1 ,  f(yl) = f ( z l )  = - 1  and u = -1.5,  the condition (E.1) 
is violated 

( f t ( y l ) , ~ l  - -  Y l )  = - 2 .  ( -0 .5)  > 0. 

Hence, zl is not the global solution. For z2 there exists the unique point Y2 = 2 : 
f(Y2) = f(z2). Moreover, it can be readily seen that 

( f ( v 2 ) ,  x - v2) -< 0, v x  ~ co(D), 

thus, z2 C Argmax(.f, D). 
Note that in the general case the verification of condition (E.1) is a rather 

complicated process. To simplify it one can rewrite (E. 1) in a somewhat different 
form. 
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THEOREM 2. Let the conditions of  Theorem 1 be satisfied. Then, to satisfy the 
condition z �9 Argmax(1) it is necessary that 

(E.2) / 

vv :  f(v) = f(z), vv* �9 of(v) 
any maximizing sequence {x ~ } of  the problem 

(y*,x) -+ max, x �9 D 

satisfies the condition 

limk--,c~ (y*, x k - Y) <~ O. 

(7) 

(8) 

If(H) is true, these conditions are also sufficient. 

3. Control of the Linear System 

Let the notation ~ mean "for almost every". Consider the following control prob- 
lem: 

9(x( t l ) )  --+ max, (9) 

k(t) = A( t )x ( t )  + B( t )u( t )  + c(t), (10) 

x ( t o )  = x ~ , 

u(.) � 9  = {u �9 L ~ ( T ) l u ( t )  �9 U, ~t �9 T} ,  (11) 

where t E [t0,h] ~ T, x(t) = ( x l ( t ) , . . . ,Xn ( t ) ) ,  u(t) = (Ul( t ) , . . . ,uT( t ) ) ;  
X ~ E R ~ - the initial state; the moments to, tl are fixed; A(t) ,  B(t) ,  c(t) are 
(n x n), (n x r) and (n x 1) matrices with the entries from L ~ ( T )  respectively; 
U is a compact set from R n, and the function 9 : Rn --+ R (R - the real axis) is 
convex and differentiable. 

It is known [1, 4, 14] that each control u(.) E /4 gives the unique solution 
x (t, u) of the Cauchy problem (10), that is an absolutely continuous function (with 
respect to t) satisfying equations (10) almost everywhere on T ( ) t  C T).  This fact 
will further be denoted as x(., u) C H 1 (T) .  

Let D be the reachable set of system (10), (11) at the moment tl [1, 4, 5]: 

D = {io �9 RnIP = X(tl,~Z), tL �9  (12) 

It is known [4, 5] under the assumption made that the set D is convex and com- 
pact. 

Now, the problem (9)-(11) can be rewritten in the form: 

g(p) --+ max, p �9 D. (13) 
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Assume that 

3p �9 D,3q �9 Rn : - ~  < g(q) < g(p). (H.1) 

Then, obviously, condition (H) holds for problem (13). 
Due to the compactness of D and the convexity (and, consequently, continuity) 

of g(.), problem (13) has the solution z = x(tl, w) �9 D, w �9  
The feasible control w(.) � 9  generating the point z, is the global optimal in 

problem (9)-(11). 
Moreover, according to Theorem 2, z �9 Argmax (13) iff 

(E.3) 

vy �9 Rn,g(u) = 9(z), 

the solution xo(y) of the following convex problem 

(g'(y),x) --+ max, x �9 D, (14) 

(which exists due to the compactness of the set D) satisfies the 
following inequality 

<9'(u), ~o(y) - u> < o. (15) 

Now, this optimality condition can be restated in terms of problem (9)-(11). 
For this purpose Vy E R n : g(Y) = g(z) we introduce the conjugate state 

(r y) = r = r  r  follows: 

r = - A * r  r  (16) 

It is known [4, 5, 14] that problem (16) has a unique absolute continuous solution 
r  E Hi(T).  

Let u(.) e /4 be a feasible control, x(.) = x(., u) - the corresponding phase 
trajectory. It may be easily seen that the following conditions [1, 4, 5, 6] hold 

d<r  ~> = <r B~ + 4 ,  ~t E T; ] 

J -<9'(u), x(t,, ~,)> = <r ~(to)>+ 

/ ( r  + c(t)) B(t)u(t) dt. 

(17) 

Then, due to the construction, the feasible control u0(') E /4 will be optimal in 
problem (14) iff 

(g'(u), x(tl, uo) - =(t,, u)) ~> o, w e u.  

Hence, in virtue of (17) we have 

/ r ( r  u0(t)]) ) 0, dt Vu EL/. 
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As known from [18, 19], due to the local structure of the set U the latter inequality 
is equivalent to the following condition. 

(r  - uo(t)])/> 0, Vv �9 U, 9t �9 T. (18) 

To put this in another way, it is necessary and sufficient that the following 
minimum condition be satisfied: 

(r  B(t)uo(t)) = ~mis(r y), B(t)v) ,  9t �9 T. (19) 

for providing optimality of the control u0(., y) in problem (14). 
So, let x0(., y) = x(., u0(., y)) be the solution of the system (10) that corre- 

sponds to the control u0(., y) � 9  satisfying the minimum condition (19) with the 
function r = r  y) as a solution for system (16). Having taken into account 
all these notations we proved the following result. 

THEOREM 3. The control w(.) C Lt is the global optimal in problem (9)-(11) iff 

Vy �9 Rn,g(y)  = g(x(t l ,  w) 

the inequality 

(E.4) (g'(y), xo(tl, y) - y) <<. 0 

holds. 

(20) 

Now let us show that the well-known maximum principle by L.S. Pontryagin is the 
particular case of the optimality condition (E.4). 

COROLLARY. It follows from condition (E.4) of Theorem 3 at y = z = z(  t l, w ), 
that the global optimal control w(.) E lg satisfies the minimum condition 

(~h(t),B(t)w(t)) = r f f~(r  (21) 

where r  is the solution of the system 

= - A * ( t ) r  r  = --gt(x(tl, w)). (22) 
Proof. Put y = z = x(tl ,  w) in (E.4). Then, due to the linearity of the system 

(10) and the functional in (14), the control u0 (., z), satisfying the minimum condi- 
tion (19) at y = z, gives the global maximum to the following control problem: 

(gt(z), X(tl)) --+ max, 

gc = A x  + B u  + c,x(to) = x ~ u E bl. (23) 

Let us demonstrate, that for the state xo(.), corresponding to the control uo(., z), 
the equality 

(g'(z), xo(tl)) = (g'(z), z) (24) 
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holds. Actually, on the one hand, the process (z(.), w(.)), for which z(t) = 
x(t, w), z(tl)  = z is feasible, and thus 

(9'(z),x0(tl)) (9'(z), z). 

On the other hand, in virtue of (E.4) for y = z = z(tl) ,  the converse inequality 
holds and, hence, equality (24) holds. 

Hence, the process (z(.), w(.)) is the solution for the problem (23) and, there- 
fore, satisfies Pontryagin's maximum principle as well. [] 

Let us  verify the validity of the condition (E.4) using the following examples. 

EXAMPLE 1. Consider the control problem 

g(x(tl)) = X2(tl) -+ max 

; b = u ,  x ( 0 ) =  1, t E T = [ 0 , 2 ]  

- 1  <~ u(t) <, 1, VtET. 

Obviously, the control ul (t) - - 1 satisfies Pontryagin's maximum principle: 

x l ( t )=x ( t ,  u l )=  l - - t ,  x1(2) = --l,  

~bl(t) = --9'(x1(2)) = 2, 

2ul(t)  = min{Zvlv E [-1,  1]), ~t E T. 

However, this control does not provide the global maximum for the considered 
problem. 

Actually, for Yl = 1, g(Yl) = g(xl(tl)) = 1 we have 

~)(t ,  Yl) ~ - - g t ( Y l )  "~ --2.  

Then, from the minimum condition 

~(t, yl)uo(t) = min{-2v]v E [-1,  1]} 

we have uo(t) -- 1 and, correspondingly, 

xo(t) =x( t ,  uo) = l +t,  x 0 ( t l ) = 3 .  

Hence, 

( g t ( Y l ) , x O ( t l )  - -  Y l )  -~  2(3 - 1) > 0, 

and therefore, the control ul -= - 1  is not global optimal. 
Let us show that the control uo(t) --= 1 is global optimal. 
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Indeed, there exist only two points Y0 = 3 = X0(tl), y = - 3  such that 

g(v )  = g ( x o ( t l ) ) .  

Verify condition (E.4) at these two points. 

r  = r  vo) = - g ' ( v o )  = - 6 .  

Hence, it follows that the control Uo(.) satisfies Pontryagin's maximum principle: 
~'t � 9  

r = nfin{r �9 [ -1 ,  l]}. 

Furthermore, due to the equality xo( t l )  = Yo we have 

( J ( y o ) ,  x o ( t l )  - yo) = o. 

Then, for y = - 3 ,  r  y) - - g ' ( y )  = 6, and from the maximum condition: 

~t �9 T r  = nfin{~b(t,y)v]v �9 [ -1 ,  1]} 

we have u( t , y )  - ul( t )  - - 1 .  And then 

(g ' (y) ,  ~ ( t l )  - v) = ( - 6 ) ( - 1  + 3) < o. 

Therefore, the control uo(t) - 1 is global optimal. 

E X A M P L E  2. Let g(x) = x~ + x~, x �9 R 2. Consider the following control 
problem: 

g(x( t l ) )  --+ max, t �9 T = [0,2], 

Xl ~-~ X2, Xl(O ) = 2, 

X2 ~--- U, x2(O ) = - 1 ,  

- 1  ~< u(t)~< 1, ~ / t E T .  

It is known from [1-6, 14] that such problems can be considered as those of object 's  
controlled motion (:el - object 's position, x2 - o b j e c t ' s  speed, u - acceleration). 
In this case, the goal of  g (x (t 1)) maximization can be interpreted as the maximal 
deviation from the point 0 at a maximum velocity at the moment t l -- 2. 

In view of the object 's  initial position Xl (0) = 2, we can assume that the motion 
will be continued in the positive direction, i.e., with the control u(t) - 1. Hence, 
x2(t) = --1 + t, x2(2) = 1, xl ( t )  = 2 + (t2/2) -- t, x1(2) = 2. Then, it is easily 
seen that the conjugate system has the following solution: 

~bl(t) = ~bl(tl) = - 4 ,  r  = - 1 0  + 4t. 
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From the minimum condition 

(~(t) ,  B(t )u( t ) )  = ~2(t)u(t) = min{~p - 2(t)vlv ~ [-1,  1]}, 9t  6 T, 

we obtain the control u(t) _-_- 1, which, consequently, satisfies Pontryagin's maxi- 
mum principle. This fact increases the hopes on optimality of u(t) -- 1. 

Nevertheless, taking the point y = ( -  1, - 2 )  for which g(Y) = g(x( t l ,  u)) = 5, 
we obtain the following situation. Since gl(y) = ( -2 ,  -4 ) ,  the conjugate system 
has the solution: 

ZPl(y,t) = ~Pl(tl) = 2, ~b2(y, t) = 8 - 2t. 

Then from the minimum condition: 9t  C T 

~b2(y,t)u(y,t) = min{~b2(y,t)vlv e [-1,  1]} 

we obtain the control u(y, t) - - 1 .  The following vector-function is the corre- 
sponding solution for the control system: 

x 2 ( y , t ) = - l - t ,  xe(y, t l ) = - 3 ,  

x , ( y , t ) =  2 - ( t 2 / 2 ) - t ,  x l (y ,  t l ) = - 2 .  

Now, let us verify condition (E.4): 

(g ' (y) ,x(y ,  t l ) - y }  = ( ( - 2 , - 4 ) ,  ( - 2 , 0 ) )  > O. 

Hence, the optimality condition (E.4) does not hold for the control u(t) - 1 and, 
so, it is not global optimal. 

Going back to the mechanical interpretation of this control problem, we may 
conclude that braking expenditures appeared to be so great that these expendi- 
tures annihilated the advantages of the initial position taken by the object under 
control. 

4. Maximization of a Convex Nonsmooth Terminal Functional in the 
Semi-Linear System with State Constraints 

Consider the following control problem: 

9o(x(tl)) --+ max, t C T = [to, tl], (25) 

k(t) = A( t )x ( t )  + f (u ( t ) , t ) ,  x(to) = x ~ (26) 

gl(x(t l))  <~ O, i = 1 , . . . , rn  (27) 

A(x(t l ) )  = b E R k, (28) 
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where gl : Rn - +  R (i = 0, . . . ,  m, R -real axis) are convex, not necessarily differ- 
entiable functions; the matrix A(.) is the same as in (10); f(u, t) is the Caratheodory 
function, i.e., continuous with respect to the first variable and measurable w.r.t, the 
second one. 

Furthermore, the mapping A ' ~ --+ ]Rk (k < n) is linear and regular: 

A(R ~) = R k. (29) 

Finally, there is the constraint (11) on the control u(.) in the problem (25)-(28). 
Introducing, as in Section 2, the reachable set 

D= {pe R~]p=x(tl,u), uElg}, 

where x(t, u) is the solution of the Cauchy problem (26), that corresponds to the 
control u(.) C b/, we can reformulate the problem (11), (25)-(28) as follows 

go(P)--+max, p E D  ] 
gl(P)~<0, i =  1 , . . . , m ,  A p = b , ]  (30) 

In virtue of the above assumptions, the reachable set is convex and compact 
according to Lyapunov's theorem and the image convexity lemma [5, 14], and 
therefore, the feasible set of problem (30) is convex and compact. 

Let assumption (H.1) of Section 2 hold, 
Then, as follows from Theorem 2, the point z C D provides the global maximum 

for the problem (30) iff 

v y e  R ~, go(v) = g0(z), vy* ~ 0g0(v), 

the solution x0(y, y*) (which exists due to the compactness of the 
feasible set in the problem (30)) of the following extremum problem 

(E.5) (y*,p) --+ max, p C D, 

gi(p) ~< 0, i = 1 , . . . , m ,  

satisfies the condition: 

(Y*,xo(Y,Y*)- Y) ~ O. 

A p =  b, } 
(31) 

[] 

Note that due to the assumptions made above, problem (31) is convex. Hence, as 
is known from [4, 14-18], the necessary (in case of A0 > 0 sufficient) condition 
of global maximum in problem (31) is presented by the following optimality 
condition: 

xo(v) = xo(v, y*) ] 
3(A,~) r 0 c _R "~+k+~, 

A~>IO, i=O, 1,...,m, p E R  k, 
Aigi(xo(y))=O, i = 1 , . . . , m ,  

3y; C Ogi(xo(y)), i =  1 , . . . , m ,  

(32) 
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-~0y* + Z ~y;  + A * , , ; -  xo(y) ~> o, 
1 

V p C D .  (33) 

it is easily seen, that [4-6] 

( ~ ( t l ) , X ( t l , u ) )  : 

as the solution for the equality system 

= - A * ( t ) r  / 
(34) 

r  = -A0y* + S-]~? A~y* + A*p. 

Denote by x0(., y) = x(., u0, y, y*) the state trajectory corresponding to the con- 
trol u0(.) E L/, for which x(tl,  uo, y, y*) = xo(y). Then condition (33) has the 
following form 

( r  y, y*), x( t l ,  u) -- x0( t l ,u0))  ~> 0, Vu E/g.  

Taking into account the obvious equality 

d (r  = (r  

fT d (r x(to, u)} + ~ ( r  x(t, u)} dt 

= (r  0} + / T ( r  f (u(t) , t )}  dt 

Using these relations, condition (35) may be rearranged in the following form: 

/T(~(t) ,  f (u(t) ,  t) - f(uo(t), t)} at o, Vu 6 L/. >1 

Due to the local structure of the set b/, 

(~b(t), Y(uo(t), t)) = rn~n{(r f (v ,  t))lv C U}, 9t ~ T. (36) 

Let xo(., uo, y, y*) be the solution of the Cauchy problem (26) for u0 = u0(y, y*), 
satisfying the minimum condition (36) with the function r = ~(., y, y*) which is 
the solution for system (34) with the vector (A, #)(y, y*) satisfying (32). Now we 
can formulate the following result. 

(35) 

r y, y*) = r = (r (t),. . . ,  r 

It is known from [4, 14-18] that equality Ao = 1 holds when Slater's condition 
holds. 

Let us transform condition (33) on account of the structure of the problem 
under consideration. To do this Vy : 9o(!1) = go(z), Vy* E Ogo(y) we introduce 
the conjugate state 
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THEOREM 4. The control w(.) is global optimal in the problem (11), (25)-(28) 
Cf 

(E.6) { 

~/y e Rn  : go(Y) = go(X( t l ,W)) ,  

the inequality 

(y*, xo(t~,v, u*) - v) ~ o 

holds. 

Vy* C Ogo(y) 

[] 

NOTES. (1) If there exists the control 5 E U such that, for the corresponding state 
~(.) = x(., g) the Slater's condition 

9~(~(t~)) < o, i =  1 , . . . ,m ,  

h e ( e l )  = b 

holds, one can put ~0 = 1 in (34). 
(2) Obviously gy : go(y) = go(x(tl, w) ), gy* 

general case, the proper set of Lagrange multipliers 
E Ogo(y) there exists, in the 

(~, I.z)(y, y*) = ()~o,)~1, . . . ,  ,~m,/_t) E R m+k+l 

for the corresponding problem (31). 
(3) In the same way as in Section 3, one can prove that the global optimal control 

w(.) satisfies the Pontryagin's maximum principle (36) with r  as the solution 
for the system (34) when y = x(tl, w), y* E Ogo(x(tl, w)). 

EXAMPLE 3. Consider the problem 

9o(x(tl)) = x2(tl) + x2(tl) --+ max, 

gl(x(tl)) = (xl(t l)  + 1)2--4 ~< 0, 

Xl = X2, Xl (0  ) = --1,  

X 2 = U  2 -- 2u, x2(0) = 0, 

-2<<.u(t) ~<2, ~ / t E T = [ 0 , 2 ] .  

Consider the control uo(t) = 1. The corresponding phase trajectory is 

x 2 ( t ) = - - t ,  X2(2) = - - 2 ,  Z1(2) = --3, 

xl(t) = -1 - t2/2, 9o(x(uo, tl)) = 13. 
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Then we verify whether the control uo(t) satisfies the maximum principle. Indeed, 
when )~ = 0.5 we have 

r  = r  = - 2 x l ( t l )  + ) ~ ( x l ( t l )  + 1) = 5, 

/~2(tl) = 4, ff32(t ) = 14 - 5t. 

It is easily seen, that the control uo(t) -= 1 satisfies the minimum condition: 
~teT  

( r  f ( u ( t ) ,  t)) = ~b2(t)[u2(t) - 2u(t)]  

= m i n { ( 1 4 -  5t)(v 2 -  2v)lv r [ -2 ,2 ]} ,  
v 

and, hence, it satisfies Pontryagin's maximum principle also. Nevertheless, let us 
show that it is not global optimal. 

To do this consider the point y = (3, 2), 

g0(Y) = g0(X(U0, t l ) ) =  13. 

Construct the conjugate system corresponding to y 

~ l ( y , t )  -- r  t l )  = - 2 y l  + 2#(yl  + 1) = 8# - 6 ,  

~2(y ,  t l )  = --2y2 = - 4 .  

Set 7- = 2 - 2 v ~ / 3 ,  # = (8 - 3T) /4(2  -- T) = 3(1 = V~)/(4V/-2) > 1. In this 
case 

~32(Y, t) = --4 q- (8# -- 6) dO = (6 - 8#) t  + 16# - 16. 

It is obvious that 

> 0, vt �9 [0,~-], 
r  = 0, t = T, (37) 

< 0 ,  vt ~ [r,2], 

Thus, from the minimum condition: Vt r T 

%b2(y, t)[u2(t)  - 2u(t)] = min{%b2(y, t ) (v  2 - 2v)lv r [ -2 ,  2]}, (38) 

we come to the conclusion that the control u(y,  #; t) has the following form 

u,( t )  = u (y ,~ , t )  = { l, t E [o,~-] 
- 2 ,  t �9 [r, 2] (39) 

Note that finding the minimum in (38) can be realized with the use of  Theorems 1 
and 2. 
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Next, find the state x .  (t) = x (y, #, t) corresponding to the control u .  (t). 
For t E [0, r] we have, as above, 

x2(t) = --t, x2(T ) -~- --T, 
x l ( t ) = - - l - - t 2 / 2 ,  X l ( T ) = - - I - - r 2 / 2 .  

I f t  E Jr, 2], then 

x2(t) = 8, x2(t) = 8t - 9r, x2(2) = 1 6 -  9r, 

Xl ( t )  = 4 t  2 - -  9rt + 4.5r  2 - 1, xl(2)  = 1. 

Finally, verify the optimality condition (E.7): 

0.5(9 ' (y) ,x , ( t l )  - y) = 2 2 -  18r = 1 2 v ~ -  14 > 0. 

Therefore, the control uo(t) = 1 is not global optimal. 

5. A General Optimal Control Problem 

In this section we study the following problem: 

g o ( x ( t l ) )  --+ max, t C T = [to, tl],  (40) 

k(t) = f ( x ( t ) , u ( t ) , t ) ,  x(to) = x ~ (41) 

gi(x(t l))  <<. O, i =  l , . . . , m ,  (42) 

9~(x( t l ) )=O,  i = m +  l , . . . , k ,  (43) 

where the control u(t) E L r ( T )  is subject to the constraint (11), go " R n -+ 
R tO {+oc}  (R - real axis) is a convex and not necessarily smooth proper function, 
9i : R n --+ R, i = 1 , . . . ,  k are local Lipschitz functions [17]. 

Let us further assume that f ( x ,  u, t) is a function continuous with respect to 
(x, u) E R '~+T and measurable with respect to t, which has the derivative fx (x, u, t) 
with the same properties. We assume also that for any feasible control u(.) E/.g the 
function f ( x ,  u(t), t) is integrable on T Vx C R'L Then, as known from [4, 14], 
the Cauchy problem is solvable. Introduce, as above, the reachable set: 

D = {p e R'~Ip = X( t l ,  ~),  ~ �9 1.~1}, 

where x(., u) is the solution of the Cauchy problem (41), corresponding to the 
feasible control u(.) �9 H. 

In the further consideration we assume that the set D is compact. The Lipschitz 
condition for f ( x ,  u, t) on (x, u) [4, 5] is sufficient for that. Then problem (11), 
(40)-(43) can be represented in the following form: 

go(P) -+ max, p � 9  

g/(p) ~<0, i =  1 , . . . , m ,  (44) 

gi(p) ---- 0, i = m + l , . . . , k .  
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Due to the assumption made above, there exists a solution of this problem if the 
feasible set is not empty. 

Assume that assumption (H.1) holds for the function g0('). Then, according to 
Theorems 1 and 2, the point z C D gives the global maximum in problem (44) 
iff 

(E.7) 

vy R n :go(y) = go(z), vy* Ogo(v), 
any stationary point x0 = xo(y, y*) (i.e., which verifies local opti- 
mality conditions) in the following extremum problem: 
(y*,p} --+ max, p E D, 

gi(P) <~ O, i =  1 , . . . , m ,  (45) 

gi(p) = O, i = m + 1 , . . . , k ,  

satisfies the condition 

(y*, xo(y, y*) - y} <. O. (46) 

NOTES. (1) As already noted, a solution and all stationary points of the problem 
(45) depend on y : go(Y) = go(z), and y* E Ogo(y). 

(2) According to above assumptions, the problem (45) is not convex in the gen- 
eral case, but this problem is "better" than the problem (44) whose nonconvexity 
generated by the objective functional does not exist any longer, since the objective 
functional in (45) is linear. 

Now, let us apply Pontryagin's maximum principle to the problem (45). Then, 
in order that the control u0(.) be optimal (may be locally optimal) it is necessary 
that in problem (45) 

(E.8) { 

3(,%, ~l , . . .  , ~ )  r 0 ~ R ~+1, 

h i ) 0 ,  i = 0 , 1 , . . . , m ,  

Aigi(xo( t l ) )=O,  i =  1 , . . . ,m ,  

3y~COcgi(xo(t l)) ,  i =  1 , . . . ,k ,  
(47) 

for which Vt E T 

H(~b(t),  xo(t), uo(t), t) = max H ( r  xo(t), v, t) 
v c U  

(48) 

where xo(.) = x(., u(.)), xo(tl) = xo(y, y*), 

H(~b, x, u, t) = (~b, f ( x ,  u, t)), 
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and the function ~(-)  �9 H i ( T )  is the solution for the following system of equali- 
ties: 

~(t)  = - f ~  (xo(t), uo(t), t ) r  

~3(tl) : AOY* -- E "~iY~" 
1 

(49) 

Thus the following theorem is proved. 

T H E O R E M  5. In order that control w �9 H be globally optimal in problem (11), 
(40)-(43) it is necessary and (if assumption (H. I) holds) sufficient that 

(E.9) 

Vy �9 R ~ :go(Y) = go(x( t l ,w)) ,  Vy* �9 Ogo(y) 

the condition 

(y*, xo(t , y, y*) - y) o, (50) 

holds for  any control uo(', y, y*) = uo('), satisfying condition (48) 
with the function ~b(., y, y*) which is the solution o f  (49). Here, 
x0(',  y, y*) = x(. ,  u0(., y, y*)) is the solution o f  system (41) that 
corresponds to the control uo(., y, y*). 

Note  that, generally speaking, condition (E.8) is not sufficient for the process 
{xo(.),  uo(.)} to provide the global maximum in problem (45). 

But, as noted above, problem (45) linearized w.r.t, the objective functional is 
simpler than the initial problem (11), (40)-(43). Roughly speaking, as far as the 
objective function is concerned, the nonconvexity degree of  problem (11), (40)-  
(43) is reduced. 

The above examples show that this fact facilitates the way out of  the "local 
holes". 
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